Penyakit kanker adalah salah satu penyebab kematian di seluruh dunia. Di indonesia Kanker serviks dan kanker payudara merupakan penyakit kanker dengan penderita terbanyak. Penyebab kanker serviks adalah virus HPV (Human Papilloma Virus) tipe 16 dan 18. Tes Pap Smear merupakan salah satu pencegahan kanker serviks secara dini. Pada pemeriksaan Pap Smear sel akan di amati di bawah mikroskop untuk membedakan sel normal dan abnormal, pada pemeriksaan ini ahli patologi terkadang kesulitan dalam pengamatan sel karena bentuk sel yang hampir mirip, dan pemeriksaan sel memakan waktu dan terkadang terjadi kesalahan. Tujuan dari penelitian ini adalah mengusulkan model klasifikasi untuk klasifikasi sel Pap Smear untuk memudahkan ahli patologi. Metode yang digunakan adalah kombinasi dari metode Particle Swarm Optimization untuk seleksi fitur dan Teknik Bagging untuk mengatasi jumlah kelas yang tidak seimbang. Dari kombinasi ke 2 metode tersebut di ujicoba dengan metode klasifikasi Decision Tree, Naïve Bayes dan K-NN untuk mengetahui perbandingan dari setiap metode klasifikasi. Hasil dari penelitian ini menunjukkan bahwa penggabungan metode Particle Swarm Optimization dan Teknik Bagging terbukti efektif untuk klasifikasi sel Pap Smear, itu di lihat dari hasil akurasi yang ditunjukkan. Klasifikasi dengan metode K-NN menghasilkan akurasi terbaik untuk klasifikasi sel normal dan abnormal yaitu 95,05%, sedangkan metode klasifikasi dengan akurasi terbaik untuk klasifikasi 7 kelas yaitu Decision Tree dengan 64,24%. |