Fakultas Teknologi Informasi

Optimasi Fitur Menggunakan Backward Elimination Dan Algoritma SVM Untuk Klasifikasi Kanker Payudara

Penulis
Dosen:
  1. TONI ARIFIN
Eksternal:
  1. Farizul Ma’arif
Tanggal Terbit
10 April 2017
Kategori
Jurnal Nasional Terakreditasi [SINTA 4]
Penerbit
Jurnal Informatika
Kota / Negara
Jakarta / Indonesia
Volume
Vol.4 No.1
Halaman
46~53
E-ISBN
https://doi.org/10.31294/ji.v4i1.1548
URL
https://ejournal.bsi.ac.id/ejurnal/index.php/ji/article/view/1548
Abstrak
Organisasi Kesehatan Dunia (WHO) tahun 2004, menyatakan bahwa 5 besar kanker di dunia adalah kanker paru-paru, kanker payudara, kanker usus besar, kanker lambung, dan kanker hati. WHO mengestimasikan bahwa 84 juta orang meninggal akibat kanker dalam rentang waktu 2005-2015. Survei yang dilakukan WHO menyatakan 8 sampai 9% wanita mengalami kanker payudara. Hal itu membuat kanker payudara sebagai jenis kanker yang paling banyak ditemui pada wanita setelah kanker leher rahim. Pada penelitian ini dilakukan klasifikasi tingkat keganasan breast cancer dengan menggunakan metode optimasi fitur Backward Elimination dan Support Vector Machine (SVM), yang bertujuan untuk memudahkan ahli dalam mengidentifikasi kanker payudara. Berdasarkan hasil dan pembahasan yang telah dilakukan, dapat disimpulkan bahwa metode Support Vector Machine (SVM) adalah Algoritma yang baik diantara algoritma yang penulis telah uji untuk pengklasifikasian Kanker Payudara menggunakan Dataset WBC (Wisconsin Breast Cancer). Dimana nilai klasifikasi performansi Akurasi dan AUC nya adalah yang tertinggi, sedangkan untuk penggabungan algoritma seleksi fitur Backward Elimination dan Support Vector Machine (SVM) mendapatkan peningkatan Akurasi sebesar 14% sehingga nilai tingkat akurasi akhirnya sebesar 97.14% dan nilai AUC mencapai 0.995.