Fakultas Teknologi Informasi

Implementasi Metode K-Nearest Neighbor Untuk Klasifikasi Citra Sel Pap Smear Menggunakan Analisis Tekstur Nukleus

Penulis
Dosen:
  1. TONI ARIFIN
Tanggal Terbit
20 April 2015
Kategori
Jurnal Nasional Terakreditasi [SINTA 4]
Penerbit
Jurnal Informatika
Kota / Negara
Jakarta / Indonesia
Volume
Vol 2, No 1 (2015)
Halaman
287-295
URL
https://ejournal.bsi.ac.id/ejurnal/index.php/ji/article/view/83
Abstrak
Kanker serviks merupakan salah satu penyebab kematian wanita di dunia. Setidaknya setiap 2 menit 1 orang di dunia meninggal karena kanker serviks. Salah satu cara pencegahan untuk mendeteksi secara dini kanker serviks adalah dengan melakukan Pemeriksaan Pap Smear. Tes Pap Smear dilakukan untuk melihat adanya infeksi atau sel-sel yang abnormal yang dapat berubah menjadi sel kanker. Pada penelitian ini menggunakan data analisis tekstur yang didapatkan dari hasil pengolahan citra inti sel Pap Smear normal dan abnormal dan 7 kelas sel Pap Smear yaitu Normal Superficial (NS), Normal Intermediate (NI), Normal Columnar (NC), Mild (Light) Dysplasia (MLD), Severe Dysplasia (SD), Moderate Dysplasia (MD), Carcinoma In Situ (CIS). Data citra berasal dari data Harlev yang berjumlah 280 citra. Metode yang digunakan dalam penelitian ini adalah metode klasifikasi K-nearest neighbor dan untuk pengujiannya menggunakan Confusion Matrix untuk melihat seberapa besar akurasi yang dihasilkan dengan menggunakan metode K-nearest neighbor . Akurasi yang dihasilkan dari klasifikasi normal dan abnormal adalah 73,10% dan untuk akurasi klasifikasi kelas adalah 33,33%.