Fakultas Teknologi Informasi

KLASIFIKASI INTI SEL PAP SMEAR BERDASARKAN ANALISIS TEKSTUR MENGGUNAKAN CORRELATION-BASED FEATURE SELECTION BERBASIS ALGORITMA C4.5

Penulis
Dosen:
  1. TONI ARIFIN
Tanggal Terbit
22 September 2014
Kategori
Jurnal Nasional Terakreditasi [SINTA 4]
Penerbit
Jurnal Informatika
Kota / Negara
Jakarta / Indonesia
Volume
Vol 1, No 2 (2014)
Halaman
123-129
URL
https://ejournal.bsi.ac.id/ejurnal/index.php/ji/article/view/48
Abstrak
Pap Smear merupakan pemeriksaan dini untuk mendiagnosa apakah ada indikasi kanker serviks atau tidak, proses pengamatan dilakukan dengan mengamati sel pap smear dibawah mikroskop. Banyak penelitian yang telah dilakukan untuk membedakan antara sel normal dan abnormal. Dalam penelitian ini menyajikan klasifikasi inti sel pap smear berdasarkan analisis tektur. Citra yang digunakan dalam penelitian ini adalah citra Harlev yang berjumlah 280 citra, 140 citra digunakan sebagai data training dan 140 citra lain digunakan sebagai testing. Pada analisis tekstur mengunakan metode Gray level Co-occurrence Matrix (GLCM) menggunakan 5 parameter yaitu korelasi, energi, homogenitas dan entropi ditambah dengan menghitung nilai brightness. Untuk memilih mana atribut terbaik digunakan metode correlation-based feature selection lalu digunakan algoritma C45 untuk menghasikan rule klasifikasi. akurasi yang dihasilkan dari klasifikasi normal dan abnormal yang menggunakan decision tree C45 adalah 96,43% dan kesalahan dalam memprediksi adalah 3,57%.