Fakultas Teknologi Informasi

Klasifikasi Algoritma Naive Bayes Dalam Memprediksi Tingkat Kelancaran Pembayaran Sewa Teras UMKM

Penulis
Dosen:
  1. RISSA NURFITRIANA HANDAYANI
  2. RIZAL RACHMAN
Tanggal Terbit
01 September 2021
Kategori
Jurnal Nasional Terakreditasi [SINTA 4]
Penerbit
Jurnal Informatika
Kota / Negara
Jakarta / Indonesia
Volume
Vol. 8 No. 2
Halaman
111 - 122
ISSN
2355-6579
E-ISSN
2528-2247
E-ISBN
10.31294/ji.v8i2.10494
URL
https://ejournal.bsi.ac.id/ejurnal/index.php/ji/article/view/10494
Abstrak
Untuk meminimalisir jumlah penyewa teras untuk UMKM di depan toko Indomaret yang terlambat (out standing) setiap tahunnya dan untuk mengoptimalkan penyewa yang lancar setiap tahunnya. Salah satu cara yang bisa dilakukan manajemen PT. Indomarco Prismatama untuk membantu menentukan prediksi kelancaran pembayaran sewa teras UMKM adalah dengan melakukan pengolahan data histori dari penyewa dengan memanfaatkan teknik data mining menggunakan algoritma naïve bayes. Naïve Bayes adalah suatu algoritma data Mining yang berfungsi memprediksi banyaknya penyewa yang terlambat pembayaran. Model yang dapat digunakan yaitu CRISP-DM, melalui pengenalan proses bisnis, pengenalan data, persiapan data, pemodelan, pengujian dan pengembangan. Algoritma yang digunakan untuk meprediksi probabilitas yaitu algoritma Naïve Bayes. Data yang digunakan berjumlah 504 data, dengan atribut yang sudah di klasifikasikan berdasarkan kelas yang dibutuhkan Area Manager, Kota, Jenis Kelamin Penyewa, Rata-rata Umur Penyewa, dan Status Pembayaran. Terdapat beberapa Probabilitas yang akan mengitung ke akuratan prediksinya, dan setelah di uji dengan menggunakan algoritma naïve bayes, maka diperoleh hasil persentasi Accuracy 81.81%, Precision 66.66%, Recall 100% dan AUC 0.800 Untuk keakuratan prediksi.